18,428 research outputs found

    A complete characterisation of the heralded noiseless amplification of photons

    Full text link
    Heralded noiseless amplifcation of photons has recently been shown to provide a means to overcome losses in complex quantum communication tasks. In particular, to overcome transmission losses that could allow for the violation of a Bell inequality free from the detection loophole, for Device Independent Quantum Key Distribution (DI-QKD). Several implementations of a heralded photon amplifier have been proposed and the first proof of principle experiments realised. Here we present the first full characterisation of such a device to test its functional limits and potential for DI-QKD. This device is tested at telecom wavelengths and is shown to be capable of overcoming losses corresponding to a transmission through 20km20\, \rm km of single mode telecom fibre. We demonstrate heralded photon amplifier with a gain >100>100 and a heralding probability >83>83 % , required by DI-QKD protocols that use the Clauser-Horne-Shimony-Holt (CHSH) inequality. The heralded photon amplifier clearly represents a key technology for the realisation of DI-QKD in the real world and over typical network distances.Comment: 9 pages, 4 figure

    A theorem regarding families of topologically non-trivial fermionic systems

    Full text link
    We introduce a Hamiltonian for fermions on a lattice and prove a theorem regarding its topological properties. We identify the topological criterion as a Z2\mathbb{Z}_2- topological invariant p(k)p(\textbf{k}) (the Pfaffian polynomial). The topological invariant is not only the first Chern number, but also the sign of the Pfaffian polynomial coming from a notion of duality. Such Hamiltonian can describe non-trivial Chern insulators, single band superconductors or multiorbital superconductors. The topological features of these families are completely determined as a consequence of our theorem. Some specific model examples are explicitly worked out, with the computation of different possible topological invariants.Comment: 6 page

    Heralded photon amplification for quantum communication

    Full text link
    Heralded noiseless amplification based on single-photon sources and linear optics is ideally suited for long-distance quantum communication tasks based on discrete variables. We experimentally demonstrate such an amplifier, operating at telecommunication wavelengths. Coherent amplification is performed with a gain of G=1.98+/-0.2, for a state with a maximum expected gain G=2. We also demonstrate that there is no need for a stable phase reference between the initial signal state and the local auxiliary photons used by the amplifier. These results highlight the potential of heralded quantum amplifiers for long-distance quantum communication, and bring device-independent quantum key distribution one step closer.Comment: 5 pages, 4 figure

    Observation of inertial energy cascade in interplanetary space plasma

    Get PDF
    We show in this article direct evidence for the presence of an inertial energy cascade, the most characteristic signature of hydromagnetic turbulence (MHD), in the solar wind as observed by the Ulysses spacecraft. After a brief rederivation of the equivalent of Yaglom's law for MHD turbulence, we show that a linear relation is indeed observed for the scaling of mixed third order structure functions involving Els\"asser variables. This experimental result, confirming the prescription stemming from a theorem for MHD turbulence, firmly establishes the turbulent character of low-frequency velocity and magnetic field fluctuations in the solar wind plasma

    HBIM for conservation: A new proposal for information modeling

    Get PDF
    Thanks to its capability of archiving and organizing all the information about a building, HBIM (Historical Building Information Modeling) is considered a promising resource for planned conservation of historical assets. However, its usage remains limited and scarcely adopted by the subjects in charge of conservation, mainly because of its rather complex 3D modeling requirements and a lack of shared regulatory references and guidelines as far as semantic data are concerned. In this study, we developed an HBIM methodology to support documentation, management, and planned conservation of historic buildings, with particular focus on non-geometric information: organized and coordinated storage and management of historical data, easy analysis and query, time management, flexibility, user-friendliness, and information sharing. The system is based on a standalone specific-designed database linked to the 3D model of the asset, built with BIM software, and it is highly adaptable to different assets. The database is accessible both with a developed desktop application, which acts as a plug-in for the BIM software, and through a web interface, implemented to ensure data sharing and easy usability by skilled and unskilled users. The paper describes in detail the implemented system, passing by semantic breaking down of the building, database design, as well as system architecture and capabilities. Two case studies, the Cathedral of Parma and Ducal Palace of Mantua (Italy), are then presented to show the results of the system's application

    High efficiency coupling of photon pairs in practice

    Full text link
    Multi-photon and quantum communication experiments such as loophole-free Bell tests and device independent quantum key distribution require entangled photon sources which display high coupling efficiency. In this paper we put forward a simple quantum theoretical model which allows the experimenter to design a source with high pair coupling efficiency. In particular we apply this approach to a situation where high coupling has not been previously obtained: we demonstrate a symmetric coupling efficiency of more than 80% in a highly frequency non-degenerate configuration. Furthermore, we demonstrate this technique in a broad range of configurations, i.e. in continuous wave and pulsed pump regimes, and for different nonlinear crystals

    Persistence of small-scale anisotropy of magnetic turbulence as observed in the solar wind

    Get PDF
    The anisotropy of magnetophydrodynamic turbulence is investigated by using solar wind data from the Helios 2 spacecraft. We investigate the behaviour of the complete high-order moment tensors of magnetic field increments and we compare the usual longitudinal structure functions which have both isotropic and anisotropic contributions, to the fully anisotropic contribution. Scaling exponents have been extracted by an interpolation scaling function. Unlike the usual turbulence in fluid flows, small-scale magnetic fluctuations remain anisotropic. We discuss the radial dependence of both anisotropy and intermittency and their relationship.Comment: 7 pages, 2 figures, in press on Europhys. Let
    corecore